Regularisation, optimisation, subregularity
نویسندگان
چکیده
Abstract Regularisation theory in Banach spaces, and non-norm-squared regularisation even finite dimensions, generally relies upon Bregman divergences to replace norm convergence. This is comparable the extension of first-order optimisation methods spaces. can, however, be somewhat suboptimal terms descriptiveness. Using concept ( strong ) metric subregularity , previously used prove fast local convergence methods, we show spaces for regularisation. For problems such as total variation regularised image reconstruction, reduces a geometric condition on ground truth: flat areas truth have compensate fidelity term not having second-order growth within kernel forward operator. Our approach proving results based formulations inverse problems. As side result that develop, provide complexity methods: how many steps N δ algorithm do take approximate solutions converge corruption level ↘ 0?
منابع مشابه
Nonlinear Metric Subregularity
In this article, we investigate nonlinear metric subregularity properties of set-valued mappings between general metric or Banach spaces. We demonstrate that these properties can be treated in the framework of the theory of (linear) error bounds for extended real-valued functions of two variables developed in A. Y. Kruger, Error bounds and metric subregularity, Optimization 64, 1 (2015) 49–79. ...
متن کاملError Bounds and Metric Subregularity
Necessary and sufficient criteria for metric subregularity (or calmness) of set-valued mappings between general metric or Banach spaces are treated in the framework of the theory of error bounds for a special family of extended real-valued functions of two variables. A classification scheme for the general error bound and metric subregularity criteria is presented. The criteria are formulated i...
متن کاملOn Noncommutative Geometric Regularisation
Studies in string theory and in quantum gravity suggest the existence of a finite lower bound to the possible resolution of lengths which, quantum theoretically, takes the form of a minimal uncertainty in positions ∆x0. A finite minimal uncertainty in momenta ∆p0 has been motivated from the absence of plane waves on generic curved spaces. Both effects can be described as small noncommutative ge...
متن کاملMetric subregularity of multifunctions and applications ∗
The metric subregularity of multifunctions is a key notion in Variational Analysis and Optimization. In this paper, we establish firstly a cretirion for metric subregularity of multifunctions between metric spaces, by using the strong slope. Next, we use a combination of abstract coderivatives and contingent derivatives to derive verifiable first order conditions ensuring the metric subregulari...
متن کاملError Bounds and Hölder Metric Subregularity
The Hölder setting of the metric subregularity property of set-valued mappings between general metric or Banach/Asplund spaces is investigated in the framework of the theory of error bounds for extended real-valued functions of two variables. A classification scheme for the general Hölder metric subregularity criteria is presented. The criteria are formulated in terms of several kinds of primal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems
سال: 2021
ISSN: ['0266-5611', '1361-6420']
DOI: https://doi.org/10.1088/1361-6420/abe4aa